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Abstract

Botulinum neurotoxins (BoNT) are the most potent of all toxins. The 50 kDa N-terminal endopeptidase catalytic light chain
(LC) of BoNT is located next to its central, putative translocation domain. After binding to the peripheral neurons, the central
domain of BoNT helps the LC translocate into cytosol where its proteolytic action on SNARE (soluble NSF attachment
protein receptor) proteins blocks exocytosis of acetyl choline leading to muscle paralysis and eventual death. The
translocation domain also contains 105 Å -long stretch of ,100 residues, known as ‘‘belt,’’ that crosses over and wraps
around the LC to shield the active site from solvent. It is not known if the LC gets dissociated from the rest of the molecule
in the cytosol before catalysis. To investigate the structural identity of the protease, we prepared four variants of type A
BoNT (BoNT/A) LC, and compared their catalytic parameters with those of BoNT/A whole toxin. The four variants were LC +
translocation domain, a trypsin-nicked LC + translocation domain, LC + belt, and a free LC. Our results showed that Km for a
17-residue SNAP-25 (synaptosomal associated protein of 25 kDa) peptide for these constructs was not very different, but
the turnover number (kcat) for the free LC was 6-100-fold higher than those of its four variants. Moreover, none of the four
variants of the LC was prone to autocatalysis. Our results clearly demonstrated that in vitro, the LC minus the rest of the
molecule is the most catalytically active form. The results may have implication as to the identity of the active, toxic moiety
of BoNT/A in vivo.
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Introduction

Seven immunologically distinct neurotoxins, produced by strains

of Clostridium botulinum, are most potent of all toxins (for a review see

references [1,2]. Botulinum neurotoxins (BoNTs) are composed of

three major structural domains of approximately equal size of 50-

kDa each. They are an N-terminal Zn-endopeptidase catalytic

domain – called light chain (LC), a central translocation domain

(Hn), and a C-terminal receptor binding domain (Hc). The latter

two in a single polypeptide is known as heavy chain (HC). A

segment of the central translocation domain, called a belt, wraps

around the LC so that the access to its active-site is occluded from

solvent [3,4]. Intoxication of cells by BoNT is believed to be

mediated sequentially by receptor binding by Hc, endocytotic pore

formation by Hn, translocation of the catalytic LC domain into the

cytosol, and proteolysis of SNARE proteins resulting in disruption of

acetylcholine release in exocytosis leading ultimately to muscle

paralysis and death [1,2]. In our continuing efforts to understand

the structural contribution on the enzyme’s catalytic mechanism, we

have studied its autocatalytic reactions [5,6,7,8], active site residues

[5], 3-D structures [9,10,11], and ability of expressed LC in

inhibiting exocytosis in sea urchin eggs [12]. There is however, no

experimental evidence available in the literature if the LC catalytic

domain enters the cytosol and functions alone, dissociated from the

rest of the molecule. In this paper, we address this question

indirectly by analyzing the kinetics of proteolysis reaction catalyzed

by the LC alone, LC containing a belt that wraps around it, LC plus

Hn domain containing the belt, a trypsin- nicked LC plus Hn’, and

the LC within the whole BoNT of serotype A.

Materials and Methods

BoNT/A LC, chemicals, buffers and reagents
The 449-residue recombinant BoNT/A LC with an extra valine

residue at position 2 [13] was expressed and purified as described

[8]. The homogeneous preparation was stored at 220uC in buffer

P (50 mM Na-phosphate pH 6.5) containing 150–250 mM NaCl

and 2 mM EDTA. The LC constructs LC+Hn and LC+Belt were

purified to homogeneity as described [14]. Nicking of the hinge

between LC and Hn domains were achieved by limited proteolysis

by TPCK-trypsin as described [14]. Figure 1 shows the schematic

representation of the five versions of the LC used in this study.
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Proteins were desalted by passing through PD-10 gel filtration

columns and were collected in appropriate buffer before each

experiment and assays. Buffer P (50 mM Na-phosphate, pH 6.5)

was used throughout except in the enzyme assays where 50 mM

Na-HEPES pH 7.4 was employed. Full-length BoNT/A was from

Metabiologics, Madison, WI. Zinc chloride was obtained from

Sigma. Rabbit polyclonal antibodies against a 16-residue N-

terminal sequence (PFVNKQFNYKDPVNGV) of BoNT/A LC

were produced and affinity-purified by Research Genetics

(Huntsville, AL). Affinity-purified, peroxidase-coupled, goat anti-

rabbit and anti-mouse IgG (H+L) and ABTS substrate were from

Kirkegaard Perry Laboratories (Gaithersburg, MD).

Enzymatic activity assays
The enzymatic assay was based on HPLC separation and

measurement of the cleaved products from a 17-residue C-

terminal peptide corresponding to residue #187–203 of SNAP-25

[13,15]. A master reaction mixture lacking the LC catalysts was

made and aliquots were stored at 220uC. At the time of assay, an

aliquot of the master mix was thawed and 25 ml was added to 5 ml

of the LC (see above) to initiate the enzymatic reaction.

Components and final concentration in this 30-ml reaction mixture

were 0.9 mM substrate peptide, 0.25 mM ZnCl2, and 0.16–

0.55 mM LC, and 50 mM Na-HEPES, pH 7.4. ZnCl2 was

included because it stimulated the activity of the LcA preparation

[5,13]. After 3–5 min incubation at 37uC, the reaction was

stopped by acidifying with 90 ml of 0.7% trifluoroacetic acid

(TFA), and 100 ml of this mixture was analyzed by HPLC as

described [13]. For Km and kcat determinations (Figure 2C), the

reaction mixtures were incubated at 23uC.

Autocatalysis experiments
Before each experiment, aliquots of the LC were thawed to

room temperature and immediately passed through a PD-10 gel-

filtration column equilibrated with Buffer P. The protein was

collected in Buffer P and stored on ice. The LC was mixed with

predetermined concentrations of ZnCl2 and 50-ml aliquots were

Figure 1. Schematic presentation of LC as it occurs in BoNT/A
(residues M1-L1296) (A), LC+Hn (residues (M1-Q861) (B),
trypsin-cleaved LC+Hn’ (residues M1-Q861) (C), LC+Belt resi-
dues M1-F552) (D), and LC alone (residues M1-K449) (E). The
numbers represent the sequence stretch of each construct.
doi:10.1371/journal.pone.0012872.g001

Figure 2. Ribbon diagram of the five versions of the BoNT/A LC used in this study. These diagrams are based on the original 3-dimensional
structure of BoNT/A dichain determined by Stevens et al [3]. The constructs used in this study and represented by the structures A, B, and D however
are single polypeptide chains. A, Structure of BoNT/A whole toxin. The three major structural domains, the n-terminal LC (red), the central
translocation Hn (blue), and the C-terminal binding Hc (yellow) are shown. A stretch of ,115 residues belonging to the translocation domain Hn that
wraps around the LC and known as belt, is shown in green. B, LC+Hn; C, LC+Hn that was nicked by trypsin. Here Figure B is slightly rotated to visualize
the tryptic cleavge site indicated by an arrow; D, LC+Belt, and E, LC. Although LC and Hn are shown separated in C to distinguish it from B, these
domains are in fact still connected by a disulfide bond (see Figure 1) in addition to other ionic and hydrophobic interactions. Figures B–E were
generated by simple truncations from the C-terminus of A.
doi:10.1371/journal.pone.0012872.g002

BoNT Protease Domain
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distributed in screw-capped Eppendorf tubes. The final concen-

tration of the protein was 0.2 mg/ml in these incubation mixtures.

The tubes were incubated at 22uC. At various time intervals 25 ml

of 2X SDS-load buffer was added to a 50-ml aliquot for SDS-

PAGE analysis.

SDS-PAGE and Western Blot
SDS-PAGE was carried out under reducing and non-reducing

conditions [16] on 1 mm thick 10% tricine-gels (Novex) as

described [17]. Samples were boiled for 5 min in 0.4% SDS, 12%

glycerol and 450 mM tris-HCl (pH 8.45). Reducing condition was

maintained by adding 5% b-mercaptoethanol to the SDS-load

buffer. The running buffer contained 0.1% SDS in 0.1 M tris-

0.1 M tricine, pH 8.3. The gels were stained with Coomassie

Brilliant Blue. Protein bands were scanned in a BioRad GS-710

Densitometer gel scanner with Quantity One software and the

relative amount of proteins in stained bands in each lane were

measured. Identity of LC and its N-terminal fragments were

confirmed by Western blots on nitrocellulose membranes that

were prepared by using a primary polyclonal antibody against a

16-residue N-terminal sequence of BoNT/A LC and a peroxidase-

coupled, goat anti-rabbit IgG (H+L) as the secondary antibody

[13].

UV-visible absorption, circular dichroism, and
fluorescence measurements

To determine protein concentration and to assess purity, UV-

visible absorption spectra were recorded at 22uC with a Hewlett-

Packard 8452 diode array spectrophotometer. LC concentration

was determined using A0.1% (1 cm light path) value of 1.0 at

278 nm [8] or by BCA assay (Pierce) with bovine serum albumin

as standard.

Circular dichroism spectra of 0.2 mg/ml of each protein in

50 mM Na-phosphate, pH 6.5, were recorded at 20uC, with a

Jasco 718 spectropolarimeter with quartz cuvettes of 1 mm path

length. An average of five scans was recorded to increase signal-to-

noise ratio at a scan speed of20 nm/min with a response time of

8 sec. In all measurements, a buffer blank was recorded separately

and subtracted from sample recordings. Molecular and mean

residue weights used, respectively, were LcA 51449.6 and 114.587,

LcA+Belt 63411.8 and 114.876, LcA+Hn 98682.1 and 114.613,

and LcA+Hn’ 98700.1 and 114.634. Secondary structural

contents were calculated by SELCON supplied in the Softsec

program (Softwood, CO.).

Tryptophan fluorescence emission spectra were recorded at

20uC (10uC for Zn-autocatalyzed LC) in a PTI QuantaMaster

Spectrofluorimeter, Model RTC 2000 equipped with a Peltier-

controlled thermostat and Felix software package. Emission and

excitation slit widths were set at 1 nm and excitation wavelength at

295 nm. Each spectrum was an average of five scans.

Results

Structural characterization of the LC variants
Five variants of LcA employed in this study are shown in

Figure 2. Four of them, namely LC+Hn (Figure 2B), LC+Hn’

(Figure 2C), LC+Belt (Figure 2D), and LC (Figure 2E) were

constructed from synthetic genes [14]. The structures in Figure 2B

and 2C should be essentially identical having an inter-domain

disulfide bond, except that the latter underwent a limited

proteolysis at a hinge between the two domains by trypsin.

Purity and linear structures of the constructed LC variants were

probed by SDS-PAGE under reducing and non-reducing

conditions (Figure 3). Because LC does not contain a disulfide

bond, it migrates as a single band corresponding to a molecular

mass of ,51 kDa under both reducing and non-reducing

conditions. LC+Belt, and LC+Hn, on the other hand contain

inter-chain disulfide bonds. However, because they each represent

single polypeptide chains, their electrophoretic mobility was not

affected by reducing condition except that a trailing smudge

preceded the major stained bands of approximately 63 kD, and

96 kD, respectively. Faint, stained bands accompanying these two

preparations probably represent contaminants, not derived from

the BoNT protein, because they were not recognized by two

unrelated polyclonal antibodies [14]. They may also represent an

insignificant population of the proteins not recognized by the

antibody. Electrophoresis under non-reducing condition of

trypsin-treated LC+Hn showed two major bands; one of

,96 kDa expected for LC+Hn, and the other of ,50 kDa, and

three smaller faint bands. Treatment of this construct by b-

mercaptoethanol, however, completely reduced it into two bands

corresponding to those of the LC and the Hn. In addition to

K449-A450 bond, there are four additional tryptic cleavage sites

within 10 residues on either side of this bond in the hinge region

between LC and Hn [18]. We did not identify the exact location of

the tryptic cleavage, but migration of the major band in the

LC+Hn’ sample under reducing condition along the LC band

(Figure 3, and [14]) suggest that the major tryptic cleavage was at

K449-A450 bond.

Our SDS-PAGE results under reducing and non-reducing

conditions supported the expected linear structures of the LC

variants. LC and Hn domains of BoNT proteins have predom-

inantly helical secondary structures [18]. To determine the

secondary structural integrity of our four LC variants, we collected

their far-UV circular dichroism spectra (Figure 4). The spectra

with negative ellipticity peaks at 222 nm and 208 nm showed that

the general pattern of all the variants represented helical proteins

[19], and their calculated a-helical content (Table 1) was not

significantly different than that observed in the crystal structure of

BoNT/A [3]. Somewhat lower a-helix content for LC+Belt may

suggest an altered structure of the belt region in the absence of the

rest of the protein. The hinge between HC and Hn is mostly

unstructured in the dichain form of BoNT/A [18]. Therefore its

cleavage by trypsin was not expected to change the secondary

structures. Yet the calculated a-helical content of HC+Hn’ is

significantly lower than that of HC+Hn. At present, we do not

have an explanation of this unexpected behavior. Nonetheless, we

Figure 3. Reducing (R) and non reducing (NR) SDS-PAGE of
various forms of the LC used. Samples (0.15 mg/ml) were heated at
.95uC for 5 min without (NR) and with (R) 5% b-mercaptoethanol in
the SDS-load buffer before electrophoresis. Molecular mass in kDa of
the marker proteins in the right lane are shown at right.
doi:10.1371/journal.pone.0012872.g003

BoNT Protease Domain
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also found significantly high tryptophan fluorescence of LC+Hn

compared to that of LC+Hn’ (Figure 5).

Tertiary structural integrity of the constructs was probed by

their intrinsic tryptophan fluorescence spectra (Figure 5). Trypto-

phan contents per polypeptide of LC, LC+Belt, LC+Hn and

LC+Hn’ were 2, 3, 6, and 6, respectively. Fluorescence emission

results therefore were expressed as fluorescence/mM polypeptide/

tryptophan. Free tryptophan has a fluorescence emission maxi-

mum at 354 nm (not shown). This maximum shifted to blue for all

of the LC variants depending on the location, exposure, direction

and distance of the tryptophan residues from polar groups

including water [20]. The most notable feature of tryptophan

fluorescence was that a single nick at the hinge between LC and

Hn domains reduced the fluorescence intensity dramatically. Such

change in intensity may indicate perturbation in the inter domain

arrangement of the protein. In the absence of similar data with

trypsin-nicked LC+Hn’ in the literature, we could not make any

rational conclusion on the tryptophan fluorescence data.

Catalytic Activity of the LC variants
We determined the catalytic activity of the LC variants on a 17-

mer peptide substrate in three different conditions. Because the

BoNT LC is a Zn-containing and Zn-dependent endopeptidase,

enhancement of its catalytic activity was observed in some

preparations by adding exogenous zinc (0.25 mM ZnCl2) depend-

ing on its zinc content. LC+Belt and LC+Hn variants contain a

disulfide bond between the LC moiety and the rest of the molecules

as in all full-length BoNTs. Including up to 5 mM dithiothreitol

(DTT) was reported necessary for significantly increasing catalytic

activity of full-length BoNT/A [21]. Thus, the activity of the latter

two LC variants was also determined in the presence of 0.25 mM

ZnCl2 plus 5 mM DTT. The highest values in activity are shown in

Table 2. Figure 6 compares the amount of products formed from

the peptide substrate by LC+Hn with that by LC in the presence of

ZnCl2 and DTT as a function of time. Including ZnCl2 and DTT in

this experiment was to ensure availability of Zn, should it dissociate

from Lc+Hn during the prolonged incubation. On a weight basis,

the LC+Hn was a much weaker catalyst. Fairly linear progress curve

with LC+Hn also indicated that this construct was quite stable over

the course of prolonged incubation at 37uC. Curvature of LC

reaction was due to sub-Km (Table 2) concentration of substrate

used. Although a trypsin-nicked LC+Belt was not prepared due to

its poor yield [14], we do not anticipate activity results much

different than that obtained with trypsin-nicked LC+Hn.

Table 2 lists the specific activities of the LC variants, along with

that of whole BoNT/A, at a fixed concentration of substrate. A

highest activity of 2.15 mmol/min/mg was obtained with the LC.

This value is more than eightfold higher than the activity of full-

length BoNT/A, and is at least 10 times higher than BoNT/A

activity reported in the literature [15,21]. Specific activity of the

LC+Hn variant was less than 25% of that obtained with its

trypsin-nicked counterpart. The result indicates the necessity of

nicking between the LC and the rest of the molecule to express its

optimum catalytic activity.

Kinetic constants
To compare the catalytic efficiencies of the LC variants, we

determined their substrate concentration at half maximal velocity,

Km, and catalytic rate constant, kcat, from double reciprocal,

Lineweaver-Burke plots (Figure 7). As shown in Table 2, Km for the

smallest LC and the largest, full-length BoNT/A were high and

similar, but that for the Lc+Belt and LC+Hn were small. Lower Km

of the latter two constructs, however, also resulted in a significantly

lower catalytic turnover (kcat) making them poorest of the catalysts.

LC+Belt and LC+Hn were poorest of the five catalysts. In the

absence of most of the HC and of Hc in these two constructs, we

could not rule out the possibility that the active site or its opening

was not adversely affected by the truncations. Because of the

Figure 4. Far-UV CD spectra of LC variants at 20uC. Average of
five spectra were collected for 0.2 mg/ml of each of LC (closed circle),
LC+Belt (open triangle), LC+Hn (closed triangle), and LC+Hn’ (crossed
hatch, X) in 50 mM sodium-phosphate, pH 6.5.
doi:10.1371/journal.pone.0012872.g004

Figure 5. Tryptophan fluorescence spectra of the LC variants at
20uC. Fluorescence emission of each protein collected at 0.20–
0.33 mg/ml in 50 mM sodium phosphate, pH 6.5, was adjusted for
1 mM protein/tryptophan. LC (closed circle), LC+Belt (open triangle),
LC+Hn (closed triangle), and LC+Hn’ (crossed X).
doi:10.1371/journal.pone.0012872.g005

Table 1. Helical content of LC variants compared with values
derived from three-dimensional (3-D) and infrared (IR)
structures.

LC Variant CD (This work) 3-D [14] IR [38]

LC 0.27 0.28

LC+Belt 0.21 0.28

LC+Hn 0.36 (0.38)

LC+Hn’ 0.26 0.38

BoNT/A n.d. 0.28 0.31

doi:10.1371/journal.pone.0012872.t001

BoNT Protease Domain
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difficulties in obtaining sufficient quantities of trypsin-nicked,

LC+Hn, we could not determine its kinetic constants. However, by

comparing its specific activity with that of others, its kcat was

expected to be as high as that of the full-length BoNT/A. In any

case, the catalytic efficiency, measured by kcat/Km, of LC alone is 8-

24-fold higher than its larger versions.

Autocatalytic activity of the LC variants
In an earlier study, we demonstrated that the LC undergoes

autocatalytic cleavage at various positions depending on solution

conditions [5,6,8]. Two factors that significantly affect the

reactions are low pH and presence of zinc [7]. Figure 8 shows

that when the LC was incubated for 48 h in the presence of

0.5 mM ZnCl2, it was converted into two major products. On the

other hand, none of the other four constructs was prone to

autocatalysis either in the presence or in the absence of 5 mM

DTT. DTT was added to ensure reduction of the interchain

disulfide bond. Even in the reduced, dichain form, LC+Hn did not

show any sign of autocatalytic fragmentation.

Discussion

Botulinum neurotoxin is a three-domain protein having its Zn-

protease activity located at the N-terminus. Primarily based on the

mechanism of cellular action of diphtheria toxin, it was postulated

that after binding the endosome surface with its C-terminal Hc

domain, the central translocating Hn domain would make a

transmembrane conduit for the N-terminal protease domain to be

exposed into the cytosol. Mechanism of Hn-surface binding has been

extensively studied by various investigators [22,23,24,25,26,27]. The

process of translocation has also been addressed by clever

experiments by Montal and associates who made several truncated

versions of BoNT/A to demonstrate that LC+Hn was sufficient for

translocation into the cytosol [28] and used inhibitors to determine

the dynamics of translocation [29]. Earlier, they also demonstrated

that reduction of the disulfide bond between LC and Hn was

essential for the translocation by measuring the catalytic activity of

the protease domain [30,31]. Three-dimensional structure of several

serotypes of BoNT has shown a large interaction surface area

between the LC and HC domains [3,4,10,32]. Therefore, a simple

disulfide reduction would not be expected to dissociate the two

chains. Although it has long been known that the disulfide reduction

dramatically accelerates the protease activity, the question that

remains unanswered is: Is physical dissociation of LC from the rest of

the molecule a necessary step in expressing its protease activity

within the cytosol?

In this paper, we used five versions of the LC starting with the

full-length BoNT/A to the smallest, free LC, and determined their

Figure 6. Time course of reactions catalyzed by LC and LC+Hn.
LC (0.4 mg, closed circle) or LC+Hn (1.8 mg, closed triangle) and 1 mM
peptide substrate in a 30 ml of reaction mixture containing ZnCl2 and
DTT was incubated at 37uC. At the indicated times, products in two vials
was analyzed by HPLC as described in the EXPERIMENTAL PROCE-
DURES.
doi:10.1371/journal.pone.0012872.g006

Table 2. Specific activity and kinetic constants of various light chain constructs.

LC variant Sp. Act. (mmol/min/mg) Rel. Sp. Act. Km (mM) kcat (Sec21) Rel. kcat kcat/Km

LC 2.1560.01 100 3.36 9.00 100 2.68

LC+Belt 0.2760.02 15.0 1.30 0.31 3.4 0.24

LC+Hn’ 0.0960.001 8.2 n.d. n.d. - -

LC+Hn 0.0260.00 1.6 0.8 0.09 1.0 0.11

BoNT/A 0.0960.01 12 4.29 1.42 15.8 0.33

Specific activity (Sp. Act.) was determined at a fixed substrate concentration of 0.9 mM in triplicate. Km and kcat values were calculated from double reciprocal plots
shown in Figure 7.
doi:10.1371/journal.pone.0012872.t002

Figure 7. Lineweaver-Burke plots of reaction velocity versus
substrate concentration of reactions catalyzed by three LC
variants. The bars accompanying the data points are standard
deviations of three to five assays. LC (closed circle), LC+Belt (open
triangle), LC+Hn (closed triangle), and BoNT/A (open circle).
doi:10.1371/journal.pone.0012872.g007
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catalytic properties. Reducing and non-reducing SDS-PAGE,

absorbance, fluorescence, and CD properties of these LC versions

supported their expected gross structures. Therefore, results of the

catalytic activity should not be subjected to undue structural

influences. Our assays contained DTT as the reducing agent;

therefore, the disulfide bond between LC and belt, LC and Hn

and LC and HC (in BoNT/A) were reduced in the four larger

versions of BoNT/A. From the three-dimensional structure, we

know that the belt on the LC covers the active site gorge that will

restrict substrate entry or product release. Therefore, lower

catalytic efficiency of BoNT/A, LC+Hn, and LC+Belt than the

LC alone may most likely be due to shielding of the active site by

the belt. A ‘chaperone’ role of the belt for the LC has been

proposed based on X-ray structure [33].

A very significant observation is the trypsin-nicked LC+Hn’

failed to undergo autocatalytic fragmentation, even though the Hn

moiety containing the Belt was not covalently linked to LC

(Figure 8). Our results extended the earlier observations by

DasGupta [34,35] that BoNT/A does not undergo autocatalysis

with an implication that shielding of the active site by the belt in

these constructs prevents this unwanted reaction. Our results

prove that complete removal of the belt is necessary for the

autocatalytic reaction to occur. Our autocatalytic results thus

complemented poor catalytic activity of versions larger than LC.

Activation of the LC protease domain of BoNT toxins by an

exogenous protease has long been known [1]. A fourfold increase

in specific activity resulted from cleavage of the hinge between LC

and Hn of the LC+Hn version. Cleavage of the hinge may

partially remove the belt from the active site entry. The fact that

the LC alone is 8–24-fold more efficient as a catalyst (Table 2)

proves that a physically dissociated LC from the rest of the

molecule is the most active catalyst.

In this study we used a 17-mer peptide substrate while use of full-

length SNAP-25 would have been the ideal. SNAP-25 lowers the Km

but does not significantly affect the kcat [5,7,36,37,38,39,40,41].

Thus, kcat (4, 11, 50, & 60/sec for LcA or BoNT/A) with the SNAP-

25 substrate however is not much different than the 17-mer

substrate (5 & 12/sec for LcA & BoNT/A) [5,7,36,37,38,39,40,41].

The larger SNAP-25 substrate lowers the Km to 10–50 mM from 3–

5 mM for the 17-mer substrate. The only information lacking in this

study is the Km values for the natural substrate, which does not

compromise with our obtained kcat values.

Evolution shapes biomolecules to perform optimally and leads

to structural, functional, and catalytic perfection [42,43,44] as has

been claimed only in case of triosephosphate isomerase [42].

While far from perfection, the LC may have evolved to this

dissociated stage to express its protease activity most efficiently.

While a structural form displaying the highest catalytic efficiency

exists, it is very unlikely that a larger, less active structure would be

responsible for what is known as the only ‘physiological’ function

of BoNT toxins. Based on these considerations, our results support

the idea that a LC dissociated from the Hn domain is the most

likely catalyst in the cytosol.
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